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SUMMARY 

Perturbation methods are used to obtain the one-dimensional, asymptotic equations that govern the fluid dynamics 
of slender, thin, inviscid, incompressible, axisymmetric, irrotational, annular liquid jets from the Euler equations. It 
is shown that, depending on the magnitude of the Weber number, two flow regimes are possible: an inertia- 
dominated one corresponding to large Weber numbers, and a capillary regime for Weber numbers of the order of 
unity. The steady equations governing these two regimes have analytical solutions for the liquid’s axial velocity 
component and require a numerical integration to determine the jet’s mean radius for inertia-dominated jets. The 
one-dimensional equations derived in this paper are shown to be particular cases of a hydraulic model for annular 
liquid jets, and this model is used to determine the effects of gravity modulation on the unsteady fluid dynamics of 
annular liquid jets in the absence of mass injection into the volume enclosed by the jet and mass absorption. It is 
shown that both the convergence length and the pressure coefficient are periodic functions of time which have the 
same period as that of the gravity modulation, but undergo large variations as the amplitude, frequency and width 
of gravitational pulses is varied. 
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1. INTRODUCTION 

The fluid dynamics of annular liquid jets dates back to Boussinesq,’,2 who developed a one- 
dimensional, steady model based on the application of Newton’s second law to a differential control 
volume of the jet. His model also assumed that the pressure is uniform throughout the liquid and that 
the velocity components are not functions of the radial co-ordinate. Boussinesq’,’ also used co- 
ordinates along and normal to the jet’s mean radius. Boussinesq’s model is strictly valid for thin, 
annular liquid jets, and has been employed by Lance and Perry,3 Hopwood4 and Taylor,’ and Baird and 
Davidson: Binnie and Squire’ and Dumbleton* to analyse the steady fluid dynamics of water bells and 
annular liquid jets, respectively. 

The equations derived by Boussinesq’?’ were projected onto a cylindrical, polar co-ordinate system 
by Hoffman et and Ramos.” The latter also obtained analytical solutions for long jets, i.e. jets 
whose mean radius at the nozzle exit is much smaller than the distance from the nozzle exit to the axial 
location at which the annular jet becomes a solid one (cf. Figure 1). This distance is here referred to as 
the convergence length. 

Lee and Wang”,’’ developed a Lagrangian model for unsteady, annular liquid membranes, i.e. 
annular liquid jets of zero thickness, based on the kinematics of the membrane and the conservation of 
mass and linear momentum. Their model was used to study the capillary instabilities of annular 
membranes which result in the formation of hollow liquid shells in zero-gravity. Since a membrane has 
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zero thickness, it cannot stand pressure differences along it; therefore, the pressure in the model of Lee 
and Wang is uniform throughout the liquid. 

An unsteady model of thin, annular liquid jets was derived by Ramosl3 who integrated the 
continuity and Euler equations along the jet’s thickness, applied the kinematic and dynamic boundary 
conditions at the jet’s interfaces (where the normal velocity component is continuous while the 
pressure jump at the interfaces is balanced by surface tension) and assumed that the axial and radial 
velocity components are uniform at each cross-section of the jet. Also, the pressure was assumed 
uniform throughout the liquid. The hydraulic model of Reference 13 reduces to that of Boussinesq’.’ 
for steady and long, annular jets. Although the model of Reference 13 has produced good agreement 
with experimental data,14 the assumptions of uniform pressure throughout the jet, and axial and radial 
velocity components independent of the radial co-ordinate may not be justified. 

In this paper, the fluid dynamics of both steady and unsteady, inviscid, irrotational, incompressible, 
axisymmetric, thin, slender, annular liquid jets is analysed by means of perturbation methods based on 
the jet’s slenderness and thickness ratios. (The slenderness ratio is defined as the ratio of the jet’s mean 
radius at the nozzle exit to a characteristic axial distance, while the thickness ratio is the ratio of the 
jet’s thickness to the mean radius at the nozzle exit.) The analysis presented in this paper is a long-wave 
expansion valid for long annular liquid jets of small thickness and considers surface tension at the jet’s 
interfaces and gravity. 

Depending on the magnitude of the Weber number, i.e. the ratio of inertia to surface tension, the 
dynamics of annular liquid jets may be controlled by inertia or capillarity. Inertia- and capillarity- 
dominated annular liquid jets are considered in Sections 2 and 3 respectively. The solutions to the 
steady equations that govern these two regimes are obtained analytically and numerically for 
capillarity- and inertia-dominated annular liquid jets in Section 4. Perturbation methods are also used 
in Section 5 to analyse the equations of the hydraulic model presented in Reference 13 and its 
relationship with the one-dimensional, asymptotic models of thin, slender, annular liquid jets 
developed in Sections 2 and 3. Some examples illustrating the shape of steady, downward and upward 
jets, and the unsteady fluid dynamics of annular jets subject to gravity modulation are presented in 
Section 7. The shape of steady, inertia-dominated, annular liquid jets has been determined by means of 
a fourth-order accurate Runge-Kutta method, while the effects of gravity modulation have been 
assessed by means of the adaptive finite-difference method of Reference 15. 

4 

Figure 1. Schematic of a downward, annular liquid jet 
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2. ASYMPTOTIC ANALYSIS OF SLENDER, ANNULAR LIQUID JETS 

The fluid dynamics of unsteady, axisymmetric, incompressible (constant density), inviscid, irrotational, 
annular liquid jets is governed by the velocity potential, +*, which satisfies the Laplace equation, 
i.e. 

where the asterisk denotes dimensional quantities, and r* and z* are the radial and axial co- 
ordinates, respectively. 

Equation (1) is subject to the following kinematic and dynamic boundary conditions at the annular 
liquid jet’s interfaces 

i =  1,2, (2) 
a+*(z,z*, t*) - a+*(z,z*, t*) + a+*(x,z*, t*)aR: - 

ar* at* az* az* ’ 
- 

where R: and R: are the radii of the jet’s inner and outer interfaces, respectively, p* is the pressure, 
a* is the liquid’s surface tension, t* is time, and p :  and p: denote the pressure of the gases 
enclosed by and surrounding, respectively, the annular liquid jet. 

The gases enclosed by and surrounding the annular liquid jet will be assumed to be dynamically 
passive, i.e.,p: and$ will be assumed to be spatially uniform, since their density is, in general, much 
smaller than that of liquids. 

In addition, initial conditions and boundary conditions at z* =0, i.e. at the nozzle exit, are to be 
provided. The boundary conditions must be obtained by matching the potential flow inside the 
nozzle with that of the free, annular jet. Since the flow inside the nozzle must satisfy the no- 
penetration condition at the solid walls, whereas the boundary conditions for the free, annular 
jet involve free surfaces, a transition from the no-penetration to the free-surface flow is expected. 
Such a transition is not considered in this paper where the interest lies in the region below the 
nozzle exit. 

Since the flow is irrotational, the liquid pressure can be determined from Bernoulli’s equation as 

p * = - p  * - - - p  * ( (g)2+($)2) + p*g*z* + B*(t*), 
at* 2 

where p* is the liquid’s density, g* is the gravitational acceleration, and B* is the time-dependent 
Bernoulli constant. This constant can be included without loss of generality in the velocity 
potential since the velocity field is the gradient of the velocity potential and only the pressure 
gradient appears in the Euler equations. Note that, if this is done, p* represents the difference 
between the static and stagnation pressures under steady state conditions. 

For thin and slender annular liquid jets 1 = bz/R:<<l and E = R:/L* << 1, where b:, R: and L* 
denote the jet’s thickness and mean radius at the nozzle exit and a characteristic axial distance or wave 
length, e.g. the convergence length, respectively. In this paper, it will be assumed that 1 = e2. Note 
that 1 = 0 corresponds to an annular liquid membrane. 
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If the radial and axial co-ordinates are non-dimensionalized with respect to R$ and L*, respectively, 
the velocity potential with respect to u$L*, t* with respect to L*/u;, and the pressure with respect to 
P*U;~, where u$ is a (constant) reference axial velocity component, e.g. the axial velocity component 
at the nozzle exit, equations (1H5) become, after substituting ( 5 )  into (3) and (4), 

p = -2- 34 - (-$ 1 (z)2+(g)2) a4 +$, at 

* * *2 where yi  = 2py/p*uE2, Fr = uE2/2g*L* is the Froude number, and We = p Ro uo /20* is the Weber 
number. 

The length used to non-dimensionalize the axial co-ordinate in this section may be replaced by 
~ ; ~ / 2 g *  which corresponds to a Froude number equal to one, and the condition of slenderness 
implies that ut2/2g* >> R$. 

Equations ( 6 x 1  0) indicate that the fluid dynamics of slender, thin, inviscid, incompressible, 
irotational, annular liquid jets depends on the slenderness ratio, E ,  and the Froude and Weber 
numbers. Depending on the magnitude of these non-dimensional numbers, several flow regimes 
are possible: the inertia-dominated and the surface-tension dominated regimes which are analysed in 
Sections 2.1-2.5 and Sections 2.6 and 2.7, respectively. The inertia-dominated regime corresponds to 
small surface tension, while the capillary regime corresponds to large surface tension. The surface- 
tension dominated regime is also analysed in Section 3 using a different non-dimensionalization than 
the one used below. 

2.1. We=co andFr=0(1)  

and the jet's mean radius at the inner and outer interfaces can be written in terms of E~ as 
If there is no surface tension, i.e. the Weber number is infinite, and Fr = O( l), the velocity potential 

+ = A, + E 2 4 2  + 0(E4), 111) 
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R2 = Ro + c2R22 + O ( E ~ ) .  (13) 

Note that the jet’s thickness which has been non-dimensionalized with respect to R;, may be written 
as 

b = R2 - R1 = ~ ~ b 2  + O ( E ~ ) ,  

b2 = R22 - R12, 

(14) 

(15) 

where 

which implies that the volumetric flow rate at the nozzle exit is 0 ( c 2 ) .  
Expansion of the kinematic (equation (7)) and dynamic (equations (8) and (9)) boundary conditions 

at R, and R2 in Taylor’s series around Ro, i.e. the jet’s mean radius, and substitution of ( l l H 1 3 )  
into (6H9) result in a system of equations in powers of c2. Equating terms of O(co) yields 

The solution of (16) subject to (17) is 40(r, z, t ) =  B(z, t). 
Equating terms of O(c2) yields 

The solution of (18) is 

B” 
4 

where the primes denote differentiation with respect to z, and C and D are functions of z and t. 

cj2(r,z) = --2 + C In r + D, (21) 

Substitution of (2 1) into (1 9) yields 

1 aR; 1 a(R;B’) 
2 at 2 az ’ 

c= --+-- 

Finally, the dynamic boundary conditions, i.e. (20), require that 

-?.+A- (E) -2%=0,  aB i =  1,2. ’ Fr 

Therefore, mathematical compatibility requires that y1 = y2 = y ,  and 

Z aB 
Fr 
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which is analogous to the Bernoulli equation for one-dimensional, irrotational flows. 
Equating terms of O(c4) yields 

The solution of (25) may be written as 

LY! C” B”” 
4 4 64 

d4 = F + E In r - - 12 - - ?(In r - 1) + - r4, 

where E and F are functions of z and t. 
Substraction of (26) and use of (22) imply that 

which is a continuity equation. 
Equation (27) may be expressed as 

which is a partial differential equation for D. 
The dynamic boundary conditions at the jet’s interfaces to O(c6) becomes 

i =  1, 2, (31) 

which may be subtracted to yield 

Equations (22), (24), (29) and (32) represent a system of partial differential equations for B’, C, Ro 
and b2, and have the same form as those of the hydraulic model developed by R a m o ~ ’ ~  for thin, 
inviscid, incompressible, annular liquid jets; consequently, these equations may be solved by 
means of the adaptive finite difference method.15 Once the values of B’, C, Ro and b2 have been 
calculated, D may be determined from (30). Furthermore, (26) and (31) at i =  1 ,  2 yield four 
partial differential equations for E, F, R12 amd R22. 

The pressure can be expressed as 

P =Po + E2P2 + O(E4)? (33) 
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which can be substituted together with (1 1) and the results obtained in this section into (10) to yield 
po=y,  i.e. to leading order, the pressure is uniform throughout the jet and equal to the pressure 
of the gases which are enclosed by and surround the annular liquid jet. 

2.2. We = co and Fr = O(cC2) 

If there is no surface tension and Fr = E - ~ F  where F = O(1), the regular perturbation expansion 
used in the previous section yields (16)-(26), (28) and (29) without the terms which contain the 
Froude number. For example, (24) becomes 

- y -  (aB)2 az - 2 - = o  ; , 
which indicates that, for steady jets, the axial velocity is uniform to leading order. 

The dynamic boundary conditions to O(c4) are 

which imply that 

(34) 

= -2B’(-$? If R, 2 + Cf In Ro + D’) - 2 a 0  ac In Ro - - ~ + - ;, (36) 

which is a partial differential equation for D. 
The dynamic boundary conditions to O(c6) yield (31) and (32). Therefore, (22), (29), (32) and 

(34) represent a system of partial differential equations for B’, C, Ro and b2. Once these values 
have been calculated, D may be determined from (36). The pressure at leading order coincides 
with that of the previous section. 

It may be easily shown that We= W C 2 ,  where W=O(l), results in an inconsistency in the 
dynamic boundary conditions at the jet’s interface at 0(e4). 

2.3. We = O(cC4) and Fr = (0( 1) 

Surface tension effects can be easily included in the perturbation method employed in the previous 
section. If We=O(l/c4), i.e. We= W/c4 and W=O(l), equations ( 1 6 x 3 0 )  may be used, while 
the dynamic boundary conditions to O(c6) become 

- (%)2-2(%+R12- - +-, 1 (37) at a (a92)) ar WRO 
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- ( % ) 2 - 2 ( % + R 2 2 i ( F ) )  -%, 1 (38) 

which may be subtracted to yield 

Equations (22), (24), (29) and (39) represent a system of partial differential equations for B’, C, & 
and b2. Once these values have been calculated, D may be determined from (30). The pressure 
at leading order coincides with that of Section 2.1, i.e. the liquid’s pressure is identical to those of 
the gases enclosed by and surrounding the annular liquid jet. Note that (39) coincides with (32) for 
w= co. 

2.4. We = O ( E - ~ )  and Fr = O ( C 2 )  

If W e = 0 ( 1 / ~ ~ )  and Fr=O(1/c2), i.e. W e =  W/c4 and Fr=F/c2 with W = O ( l )  and F = 0 ( 1 ) ,  it may 
be easily shown that (16)-(22), (25), (35), (37) and (38) hold. Therefore, B’, C, Ro and b2 may be 
determined from (22), (29), (34) and (39), while D may be calculated from Eq. (36). 

2.5. We = O(cP4) and Fr = O ( & C ~ )  

and Fr = O( l/c4), i.e. We = W/e4 and Fr = F/c4 with W =  0(1) and F = O( l), it may 
be easily shown that (16H22) and (25H30) hold, while the dynamic boundary conditions to O ( E ~ )  
become 

If We = O( 

(40) 
a - ( 2 ) 2 - 2 ( % + R , 2 $ ( $ ) )  +-+- z 1  

F WRo’ 

which may be substracted to yield (39). Therefore, B’, C, Ro and b2 may be determined from (22), (29), 
(34) and (39), while D may be calculated from (30). 

The asymptotic analysis presented in Sections 2.1-2.5 results in a system of four partial differential 
equations for the leading order axial velocity component, mean radius, and thickness of the annular 
liquid jet (cf. (22), (24) and (29)) which are coupled to, for example, (32) which provides the value of 
C, i.e. the next to the leading term of the velocity potential (cf. (21)). Furthermore, the asymptotic 
analysis presented here is a long wavelength one which is not strictly applicable at the nozzle exit, even 
though boundary conditions at the nozzle exit will be used when solving (22), (24), (29) and (32) as 
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indicated in Section 4. Furthermore, it is important to indicate that the results of the five previous 
sections indicate that, if the Weber number is sufficiently large, mathematical compatibility requires 
that the pressure of the gases enclosed by the annular jet be identical to that of the gases surrounding 
the jet and identical to the liquid’s pressure. Therefore, the results presented in Sections 2.1-2.5 are 
consistent with a hydraulic approximation to leading order in that the liquid’s pressure is uniform 
throughout the jet. Furthermore (32) and (39) indicate that, in addition to B(0, t), Ro(O, t )  and 
b2(0, t), an additional boundary condition must be provided. Such a boundary condition may be 
the specification of aRo(0, t)/az. 

To handle a pressure difference between the gases enclosed by and surrounding the annular jet, 
surface tension effects must be much larger than those considered in the previous sections as indicated 
in the next section. 

2.6. We=O(l) andFr=O(l)  

If We = O( l), and Fr = O( l ) ,  equations (1 1H13) may be used to obtain (16)-(19), while the 
terms l/WeRo and - l/WeRo must be added to the right hand sides of (20) for i =  1 and 2, 
respectively, i.e. (20) becomes 

aB 1 
Fr 

- 0. 
aB 1 

Fr 

Equations (42) and (43) can be substracted and added to yield, respectively, 
n L 

YI - Y2 = =* 
(43) 

(44) 

Equation (44) indicates that the difference between the pressure of the gases enclosed by and those 
surrounding the annular liquid jet is balanced by surface tension effects, whereas (45) shows that 
surface tension does not affect the leading order axial velocity component. 

Equations (22), (29), (44) and (45) may be solved to obtain the values of B’, C, Ro and b2. 
Furthermore, it must be indicated that, for We=O(l), closure of the equations at leading order 
is achieved without invoking the dynamic boundary conditions at O@), while the analysis 
presented in Sections 2.1-2.5 required these boundary conditions. 

2.7. We = O( 1) and Fr = O(c-’) 

the flow are (22), (29), (44) and 
If We = O( 1 )  and Fr = FE-’ where F= O(1), it may be easily shown that the equations governing 

Equation (46) indicates that gravity does not affect the liquid’s axial velocity component at leading 
order, and (22), (29), (44) and (46) may be solved to obtain the values of B’, C, Ro and b2. 

Since a large surface tension implies that the Weber number is small and since the Weber number is 
the square of the ratio of a characteristic axial velocity at the nozzle exit, u:, to the capillary velocity, 
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* u, = ( ~ * / p * R ; ) l / ~ ,  a small Weber number implies that the capillary velocity is larger than that 
at the nozzle exit. Therefore, asymptotic analyses of large surface tension, i.e., capillary, annular 
jets may be conveniently performed by nondimensionalizing the liquid’s axial velocity with 
respect to the capillary velocity as indicated in the next section. 

3. ASYMPTOTIC ANALYSIS OF CAPILLARY, ANNULAR LIQUID JETS 

If the axial and radial co-ordinates, velocity potential, annular jet’s radii and pressure with respect to 
L*, R$,u;L*, R: and p*ur2/2, respectively, so that ( 1 x 5 )  become (6), (7), and 

p = -  ( 2-+-  :: :2 (;:y - + (3’) - +--, z7 (49) 

* * *2 where Bo = 2p g Ro /o* is the Bond number. 
If B O = ~ E ,  where b=O( l ) ,  substitution of (1 1 x 1 3 )  into (6) ,  (7), (47) and (48) and expansion 

of the interface boundary conditions in Taylor’s series yield (22) and (29), while (47) and (48) 
become to O(c2) 

aB 1 
-yI + z B -  (E) - 2 % + g =  0, 

-y ’+zB-( ; )  -2a t -Ro=0 .  as 1 

Equations (50) and (51) can be substracted and added to yield, respectively, - L 
Y1 - Y 2  = - 1  RO 

I 2  aB 
2 at 

-- ’ I  + y 2  +zb - ( B )  - 2-  = 0. (53) 

Equation (52) indicates that the difference between the pressure of the gases enclosed by and those 
surrounding the annular liquid jet is balanced by surface tension effects, whereas (53) shows that 
surface tension does not affect the leading order axial velocity component. Equations (22), (29), (52) 
and (53) may be solved to obtain the values of B’, C, Ro and b2. 
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If Bo =  BE^, where B = O( l), equation (53) is to be replaced by 

which together with (22), (29) and (52) may be solved to obtain the values of B’, C, Ro and b2. 

4. STEADY, ANNULAR LIQUID JETS 

The one-dimensional models of thin, slender, annular liquid jets presented in Sections 2.1-2.5 may be 
compactly written as (cf. (22), (24), (29) and (32)) 

au au 1 
at az 2 ~ ’  
-+u-=- 

laR; +--- 1 a(R;u) 
- c, -- 

2 at 2 az (57) 

where U =  B’, and (G, H) = (Fr, a), (00, co), (Fr, W),  (a, a), and (a, co) for the flow regimes 
analysed in Sections 2.1-2.5 respectively. 

The capillary flow regimes presented in Sections 2.6 and 2.7 are governed by (59, (56), and 

while those of Section 4 are governed by (55), 
au au 1 
at 
-+u-=- az 2M’ 

and 

where M= B and co for Bo = EB and Bo = E ~ B  respectively (cf. (53) and (54)). 

solutions which are described in the next paragraphs. 
For steady annular liquid jets, the leading order (55)-(58), and (53, (56) and (59) have analytical 

4. I .  Inertia-dominated jets 

The steady state solutions of (55) and (56) can be written as 

URob2 = p, U = (1 + Z/G)’l2, 

where f l  denotes the (constant) volumetric flow rate and may be set to one without loss of 
generality, and the leading order axial velocity has been assumed to be valid up to the nozzle exit 
(cf. (60)). Equation (62b) is Torricelli’s fiee-fall law. 
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For steady jets, (57) and (58 )  may be written as 

*’ = c, (63) 

(64) 
2$2UUrf + (CU)2 - ( I )U’)~  - (21jU)~/~/Hp 

*It = 
2* u2 

where 
= 1 UR;, 

and 

Equations (63x67)  may be solved numerically by means of, for example, a fourth-order accurate 
Runge-Kutta method, to obtain the values of I) and Ro, and (62a) may be used to determine b2. 
Equations (63) and (64) demand that the values of, for example, Ro, b2 and Mddz be specified 
at the nozzle exit, i.e., at z = 0. 

4.2. Surface tension-dominated jets 

(62) if the variables are non-dimensionalized as in Section 2, or by 
The steady state fluid dynamics of surface tension-dominated annular jets are governed by (59) and 

URob2 = f i ,  U = ( 1  + z / M ) ” 2 ,  (68) 

and 

if the non-dimensionalization of Section 3 is employed. Note that the leading order axial velocity 
component has been assumed to be valid up to the nozzle exit. 

Since, according to (69), the mean radius of the annular jet is constant, surface-dominated jets will 
not be considered hrther in this paper. Note that even for unsteady jets, the capillary regime is 
characterized by a jet’s mean radius which is, at most, a function of time (cf. (59)). 

5. COMPARISON WITH OTHER MODELS 

For large Weber numbers, the steady state solutions of the asymptotic equations presented in the 
previous section indicate that the axial velocity component of the liquid at leading order is governed by 
Torricelli’s free-fall law (cf. (62b)). The same law was found to govern the steady fluid dynamics of the 
one-dimensional, hydraulic model of annular liquid jets developed by RamosI3 if the jet’s convergence 
length is much larger than the jet’s mean radius at the nozzle exit. For this reason and in order to 
understand the advantages and limitations of the one-dimensional models of annular Iiquid jets 
developed in this paper, it is convenient to compare their formulations with that of Reference 13. 
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Using the same non-dimensionalization as in Section 2 for z, R and t ,  the hydraulic model of 
Reference 13 may be written as 

a(Rb) a(uRb) -+-=o, 
at az 

a a Rb 2 y1 +&)R-, aR 
a2 

-(uRb) + - (u2Rb) = f- + - 
at az 2Fr 

a a 
-(vRb)+-(uvRb)=- 
at az 

aR aR v=-+u- .  
at az (73) 

(74) 
1 a2R/az2 

J =  
R(i  + (&aR/aZ)2)1/2 - E2 (1 + (taR/az)2)3/2 ’ 

* *  * *  * *  where u = u /uo,v= v /EUO,R = R /Ro and b = b*/R; denote the average axial and radial 
velocity components, and the jet’s mean radius and thickness, respectively, and the asterisk denotes 
dimensional quantities. 

Equations (55H58) or (55), (59) and (60) have the same form and are of the same type as (70x73);  
therefore, they may be solved by means of the adaptive finite difference method developed in 
Reference 15 which maps the time-dependent, curvilinear geometry of the annular liquid jet into a unit 
square, employs upwind differences for the convection terms, and uses an iterative, block bidiagonal 
technique to determine the values of the dependent variables at each grid point. Despite the similarities 
between (55H58) and (70)-(73), there are substantial differences between them. First, (70)-(73) were 
obtained by integrating the Euler equations along the jet’s thickness, applying the kinematic and 
dynamic boundary conditions at the jet’s interfaces, using Taylor’s series expansions around the jet’s 
mean radius, and assuming that the jet’s axial and radial velocity components are not functions of the 
radial co-ordinate.13 On the other hand, (55x58)  have been derived by means of asymptotic 
expansions in Section 2. 

Second, the hydraulic model represented by ( 7 0 x 7 3 )  allows for a pressure difference between the 
gases enclosed by and surrounding the annular jet, whereas the models developed in Sections 2.1-2.5 
imply that y1 = y2 .  Third, if the dependent variables in (70H73) are expanded as 

u = uo + E2U2 + O(t4), v = vo + &2V2 + 0(&4),  (75) 

R = Ro + e2R2 + O(c4), b = ~ ~ b 2  + O(c4), (76) 

We = O(1) and y~ - y2 = O(1), equation (72) is, at leading order, i.e. O(E’), identical to (59), while 
(70) and (71) are identical to (55) and (56) to leading order. Equation (73) is, at O(c0), 

aR0 aR0 
at az vo=-+uo-, (77) 

where the second term in the right-hand side of this equation is zero since, according to (59), Ro is 
only a function of time. 

The same results may be obtained if We = W/E’ and y1 - y2 = c2(fl - f 2 ) ,  where Wand ( f l  - f 2 )  are 
O(1). Furthermore, if y l  = y 2  and We= 00 or We= W/e4, where W = 0(1), it may be easily 
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shown that, to leading order, (70) and (71) are identical to (55) and (56), respectively, (73) is 
identical to (77), and (72) becomes 

where Z= cc or Z= W if We= cc or W/c4 respectively. Furthermore, (77) and (78) may be 
combined to obtain (57) and (58). Therefore, the hydraulic model of Reference 13 includes the 
one-dimensional models presented in this paper, and its formulation accounts for a pressure 
difference between the gases enclosed by and surrounding the annular liquid jet. Since the axial 
and radial velocity components of the liquid were assumed to be independent of the radial co- 
ordinate, the hydraulic model is only valid for thin annular jets. 

Equations (70x73)  may also be used to study the fluid dynamics of annular liquid membranes, i.e. 
annular jets of zero thickness, by simply replacing Rb by m, where m denotes the annular membrane’s 
mass per unit length and per radian. 

6. PRESENTATION OF RESULTS 

The one-dimensional models presented in Sections 4 have been used to determine the fluid dynamics 
of steady, upward and downward annular liquid jets as indicated Sections 6.1 and 6.2, respectively, by 
solving (63x67)  by means of a fourth-order accurate Runge-Kutta method with Az=O.OOl. 
Equations (55H58) were solved by means of the adaptive finite difference method presented in 
Reference 15 in order to determine the shape and velocity field of steady, upward and downward 
annular liquid jets. The largest differences between the results of the Runge-Kutta and adaptive 
finite difference methods were of the order of 

The hydraulic model discussed in Section 5 accounts for pressure differences between the gases 
enclosed by and surrounding the annular jet, and was used to study the effects of gravitational 
modulation on the unsteady fluid dynamics of annular liquid jets as indicated in Section 6.3. 

6.1. Steady, upward, annular liquid jets 

Some sample results illustrating the shape of steady, upward, annular liquid jets are presented in 
Figures 2-6. Figures 2-4 correspond Ro(0) = b2(0) = 1, E = 0.1, Fr = - 1, and dRo(O)/dz = - 0.25, 0 
and 0.25, respectively, and several Weber numbers. Figure 2 corresponds to inwardly directed 
flows at the nozzle exit, i.e. flows directed toward the symmetry axis, and shows the thickening 
of the annular liquid downstream of the nozzle; this thickening is due to the gravitational 
acceleration which opposes the jet’s motion. Figure 2 also shows that the jet’s thickness reaches 
large values near z=  1. This result is consistent with (62) which indicates that the leading order 
axial velocity component becomes zero at z = - G, for G < 0; at this location, the jet’s thickness 
becomes infinite according to (62a). Figure 2 also indicates that the axial location at which the 
axial velocity becomes zero increases as the Weber number is increased. 

Figures 3 and 4 correspond to axial and outwardly directed, respectively, flows at the nozzle exit, and 
exhibit similar trends to those of Figure 2. These three figures also indicate that the jet’s shape is not 
very sensitive to the Weber number for We 2 100. 

Figure 5 corresponds Ro(0) = b2(0) = 1, E = 0.1, We = 100, dRo(0)/dz = 0, and two different values 
of the Froude number, and indicates that the axial location at which the axial velocity 
component of the annular liquid jet becomes zero increases as the Froude number is increased. 
This result is again consistent with (62b) which indicates that the leading order axial velocity 
component becomes zero at z = - G, for G -= 0. 
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Figure 3. Steady, upward, annular liquid jets (Fr = - I ,  R,(O) = b2(0) = 1 ,  dR(O)/dz = 0, E = 0. I ,  and We = co (solid lines), 100 
(dashed lines), 10 (dashed-dotted lines)) 
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Figure 4. Steady, upward, annular liquid jets (Fr = - 1 ,  &(O) = b2(0) = I ,  dR(O)/dz = 0.25, E = 0.1, and We = 00 (solid lines), 
100 (dashed lines), 10 (dashed-dotted lines)) 

Figure 5.  Steady, upward, annular liquid jets (We = 100, Ro(0) = b2(0) = 1 ,  dR(O)/dz = 0, E = 0.1, and Fr = - 1 (solid lines), 
- 10 (dashed lines) 
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Figure 6. Steady, upward, annular liquid jets (Fr = - 1, Ro(0) = bz(0) = 1, dR(O)/dz = 0, E = 0.01, and We = to (solid lines), 100 
(dashed lines), 10 (dashed-dotted lines)) 

Figure 6 corresponds Ro(0) = hz(0) = 1, E = 0.01, Fr = - 1 ,  and dRo(O)/dz = 0 respectively, and 
several Weber numbers, i.e. it corresponds to thinner annular liquid jets than those shown in 
Figure 3. Figures 3 and 6 indicate that the axial location at which the axial velocity component 
of upward jets tends to zero at the theoretical limit of z = - G increases as the thickness of the jet at 
the nozzle exit is decreased. 

6.2. Steady, downward, annular liquid jets 

Some sample results illustrating the shape of steady, downward, annular liquid jets are presented in 
Figures 7-1 I .  Figures 7-9 correspond Ro(0) = bz(0) = 1, E = 0.1, Fr = 1, and dRo(O)/dz = - 0.25, 0 
and 0.25, respectively, and several Weber numbers. Figure 7 corresponds to inwardly directed flows 
at the nozzle exit, i.e. flow directed toward the symmetry axis, and shows the thickening of the 
annular liquid at the convergence point, i.e. at the axial location where the jet’s inner radius 
becomes zero. Figure 7 also indicates that the convergence length increases as the Weber 
number is increased; therefore, the validity of the slender approximation used in this paper 
increases as the Weber number is increased. 

Figures 8 and 9 correspond to axial and outwardly directed, respectively, flows at the nozzle exit, and 
exhibit similar trends to those of Figure 7, i.e. the convergence length increases as the Weber number is 
increased. Although not shown here, the convergence length for axially directed flows at the nozzle 
exit and We = 100 is about 30, while no convergence was observed for z < 100 for We = co. The 
same holds for We= 100 and 00 in Figure 9. Figures 7-9 also indicate that the jet’s convergence 
length increases as the slope of the annular liquid jet at the nozzle exit is increased. 

Figure 10 corresponds Ro(0) = b2(0) = 1 ,  E = 0.1, We = 100, dRO(0)ldz = 0, and two different values 
of the Froude number, and indicates that the convergence length increases as the Froude 
umber is decreased, i.e. as the gravitational acceleration is increased with respect to the flow 
inertia at the nozzle exit. 
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Figure 7. Steady, downward, annular liquid jets (Fr = 1, RO(0) = b2(0) = 1, dR(0)ldz = - 0.25, E = 0.1, and We = co (solid 
lines), 100 (dashed lines), 10 (dashed-dotted lines)) 
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Figure 8. Steady, downward, annular liquid jets (Fr = 1, Rc(0) = b2(0) = 1, dR(0)ldz = 0, E = 0.1. and We = co (solid lines), 100 
(dashed lines), 10 (dashed-dotted lines)) 
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Figure 9. Steady, downward, annular liquid jets (Fr = 1 ,  Ro(0) = b2(0) = 1, dR(0)ldz = 0.25, E = 0.1, and We = to (solid lines), 
100 (dashed lines), 10 (dashed-dotted lines)) 
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Figure 10. Steady, downward, annular liquid jets (We = 100, Ro(0) = b2(0) = 1, dR(0)ldz = 0, E = 0.1, and Fr = 1 (solid lines), 10 
(dashed lines)) 
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Figure 1 1. Steady, downward, annular liquid jets (Fr = 1 ,  Ro(0) = bz(0) = 1, dR(O)/dz = 0, E = 0.01, and We = u) (solid lines), 
100 (dashed lines), 10 (dashed-dotted lines)) 

Figure 1 1 corresponds Ro(0) = b2(0) = 1, E = 0.0 1, Fr = 1, and dRo(0)/dz = 0 respectively, and 
several Weber numbers, i.e. it corresponds to thinner annular liquid jets than those shown in 
Figure 8. Figures 8 and 11 indicate that the convergence length increases slightly as the annular 
jet’s thickness at the nozzle exit is increased. 

6.3. Annular liquid jets subject to gravity modulation 

The hydraulic model reviewed in Section 5 may be used to determine the effects of time-dependent 
boundary conditions at the nozzle exit, unsteady gas injection into the volume enclosed by the jet, and 
fluctuating body forces on the unsteady dynamics of annular liquid jets. In this section, the effects of 
gravity modulation on isothermal, downward, annular liquid jets are considered in the absence of mass 
injection into the volume enclosed by and mass absorption by the annular jet. These effects are 
analogous to those that occur when the annular jet is translated with an axial acceleration parallel to the 
z-axis without rotation. In this case, the velocity components that appear in the hydraulic model 
of Section 5 are relative to the non-inertial frame of reference. 

Instead of using the nondimensionalization of Section 2, the equations of the hydraulic model may 
be written as 

a a 1 aR 
- at (mu) + - az (mu2) = mQ + - We ( -Cpn + J ) R  - az , 

a a 1 - (mv) + - (muv) = - (cpn - J ) R ,  
at az We 
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aR aR 
v=-+u- .  

at az 

where lengths, time and velocity components have been nondimensionalized with respect to 
R:,R:/u: and u:, respectively, Q =g*R:/uo*2 is the inverse of the Froude number, 
We = m:~:~/2a*R:, m = Rb, m:=p Ro bo and * * *  

Equations (79H83) have been solved subject to the following boundary conditions at the nozzle 
exit 

m(0, t )  = b:/R:, R(0, t )  = v(0, t )  = 1, v(0, t) = 0 ,  (85 )  

and a gravitational acceleration which is a periodic function of time. For a sinusoidal gravitational 
modulation, i.e. 

g* = g:(l + a sin(o*t*>) (86) 
where go*, a and o* are a (constant) mean gravitational acceleration, the non-dimensional 
amplitude and the dimensional fiequency of the gravitational fluctuations respectively. For 
experiments carried out aboard spacecraft, the intermittent sinusoidal gravitational acceleration 
of (86) may correspond to intermittent firings of rockets for attitude control, crew motions, etc. 

Using the non-dimensionalizations described above, the inverse of the Froude number may be 
written as 

a sin(2nSt)), 
1 1  Q = K = # +  

where Fro = g:R:/ut2, and S = o*R:/2nu: is the Strouhal number. 
Since gravitational fluctuations produce changes in the shape of the annular liquid jet, one must 

account for the compression and expansion of the gases enclosed by and surrounding the annular 
liquid jet. Here, the gases surrounding the annular liquid jet have been assumed to be infinite in extent 
and p:= const., while those enclosed by the jet have been assumed to be isothermal so that 

where L denotes the convergence length, i.e. RI(L(t), t) = 0. 
Equations (79x83) were solved by means of the adaptive finite difference method of Reference 15 

with a=O until a steady state solution of these equations was found. Once a steady state was 
reached, the time was set to zero and the gravitational modulation was applied. Calculations 
were performed until all the flow variables were periodic functions of time. Some sample results 
corresponding to ~ ' ( 0 )  = p : ,  We = 50, Fro = 10, and b:/R: = 0.05 are illustrated in Figures 
12-14 for periodic, rectangular, gravitational modulations with S= 0.1 and a = 0.25, 0.75 and 
1.50 respectively. These figures indicate that the pressure coefficient and the convergence length 
(which has been normalized with respect to that at steady state) are periodic functions of time 
which have the same frequency as that of the gravitational modulation; their amplitudes 
increase as a is increased. The phase diagram for the convergence length has been drawn for 
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Figure 12. Inverse of the Froude number (top left), pressure coefficient (top right), convergence length (bottom left) and phase 
diagram for the convergence length (bottom right) as functions of time (a = 0.25, S= 0.1, pulse width = time between pulses = 5 )  

t 2 0 in order to illustrate the dynamics of the convergence length from the initial steady state 
(with a = 0) until a periodic solution is reached, and undergoes large changes as a is increased. 

Figures 15-1 7 also correspond to a rectangular, gravitational modulation of a = 0.25 and S = 0.1, 
and illustrate the effects of the separation or time between rectangular pulses on the dynamic 
response of the annular liquid jet. For a purely rectangular modulation, Figure 15 indicates that 
the pressure coefficient and convergence length are periodic functions of time and have small 
amplitudes. The amplitude of these oscillations and the distortion of the phase diagram for the 
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Figure 13. Inverse of the Froude number (top left), pressure coefficient (top right), convergence length (bottom left) and phase 
diagram for the convergence length (bottom right) as functions of time (a = 0.75, S = 0.1, pulse width = time between pulses = 5 )  
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Figure 14. Inverse of the Froude number (top left), pressure coefficient (top right), convergence length (bottom left) and phase 
diagram for the convergence length (bottom right) as functions of time (a = 1.50, S= 0.1, pulse width = time between pulses = 5 )  

convergence length increase as the separation between rectangular pulses is increased (cf. Figure 
16). Further increases in the separation between pulses result in a decrease of the amplitude of 
both the convergence length and the pressure coefficient and in the formation of two loops in the 
phase diagram for the convergence length as shown in Figure 18. Note that, in the absence of 
gravitational modulation, the values of the pressure coefficient and non-dimensionalized 
convergence length are zero and one, respectively. 
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Figure 15. Inverse of the Froude number (top left), pressure coefficient (top right), convergence length (bottom left) and phase 
diagram for the convergence length (bottom right) as functions of time (a = 0.25, S = 0.1, pulse width = 1, time between 

pulses = 0) 
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Figure 16. Inverse of the Froude number (top left), pressure coefficient (top right), convergence length (bottom left) and phase 
diagram for the convergence length (bottom right) as functions of time (a = 0.25, S = 0.1, pulse width = 1, time between 

pulses = 4) 

The effects of the width of the rectangular, gravitational fluctuations of a = 0.25 and S =  0.1 are 
illustrated in Figures 18-20 which indicate that the amplitude of both the pressure coefficient 
and the convergence length are nearly independent, but suffer large changes, as the width of the 
gravitational pulses is increased. The number of small loops and the shape of the phase 
diagrams for the convergence length increase and undergo large changes, respectively, as the 
pulse width is increased. 
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Figure 17. Inverse of the Froude number (top left), pressure coefficient (top right), convergence length (bottom left) and phase 
diagram for the convergence length (bottom right) as functions of time (a = 0.25, S=O.l, pulse width = 1, time between 

pulses = 8) 
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Figure 18. Inverse of the Froude number (top left), pressure coefficient (top right), convergence length (bottom left) and phase 
diagram for the convergence length (bottom right) as functions of time (a = 0.25, S= 0.1, pulse width = time between pulses = 5) 

Figures 12-20 also indicate that the maxima and minima of the pressure coefficient occur 
approximately at the times when the inverse of the Froude number reaches its average value, while 
those of the convergence length are located at, approximately, the times when the inverse of the Froude 
number reaches its maximum and minimum values. Similar trends to those shown in Figures 12-20 
have been observed for sinusoidal, gravitational modulations, and are not presented here. 
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Figure 19. Inverse of the Froude number (top left), pressure coefficient (top right), convergence length (bottom left) and phase 
diagram for the convergence length (bottom right) as functions of time (a = 0.25, S = 0.1, pulse width = 5 ,  time between 

pulses = 10) 
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Figure 20. Inverse of the Froude number (top left), pressure coefficient (top right), convergence length (bottom left) and phase 
diagram for the convergent length (bottom right) as functions of time (a = 0.25, S= 0.1, pulse width = 5 ,  time between 

pulses = 15) 

7. CONCLUSIONS 

Perturbation methods have been used to derive the asymptotic, one-dimensional equations which 
govern the fluid dynamics of inviscid, incompressible, irrotational, slender, thin, annular liquid jets 
from the two-dimensional Euler equations in cylindrical polar co-ordinates using the slenderness and 
thickness ratios as small parameters. It is shown that, depending on the magnitude of the Weber 
number two flow regimes may be identified: the inertia-dominated flow regime corresponds to large 
Weber numbers, whereas the capillary one is associated with Weber numbers of the order of one. The 
capillary flow regime has also been analysed using the capillary velocity as reference. 

For steady, annular liquid jets, it has been shown that the capillary flow regime is characterized by 
cylindrical, annular jets of a radius proportional to the difference between the pressure of the gases 
enclosed by and that of those surrounding the liquid, falling under gravity according to Torricelli's free- 
fall law. The same law is also found to apply to the inertia-dominated flow regime; however, the radius 
of the jet may not be determined analytically, and a fourth-order accurate Runge-Kutta method was 
employed to determine the shape of inertia-dominated, annular jets. 

Asymptotic methods have also been used to study the governing equations of a previous hydraulic 
model. It has been shown that this model reduces to those obtained from the Euler equations by means 
of perturbation methods, and accounts for differences between the pressure of the gases enclosed by 
and that of those surrounding the liquid even when the Weber number is large enough. However, the 
one-dimensional models obtained from the Euler equations by means of perturbation methods require 
that the pressure be uniform throughout the liquid and the gases surrounding and enclosed by the 
annular jet at high Weber numbers. 

The hydraulic model has been used to determine the unsteady fluid dynamics of thin, annular liquid 
jets subject to gravity modulation, and the results of these studies indicate that both the pressure of the 
gases enclosed by and the convergence length of the annular liquid jet are periodic functions of time 
whose amplitude increases as the amplitude of the gravity modulation is increased, is nearly 
independent of the width of the rectangular, gravitational pulses, and first increases and then decreases 
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as the separation between pulses is increased. The phase diagram for the convergence length undergoes 
large changes as the amplitude and width of the rectangular gravitational pulses is increased. 
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